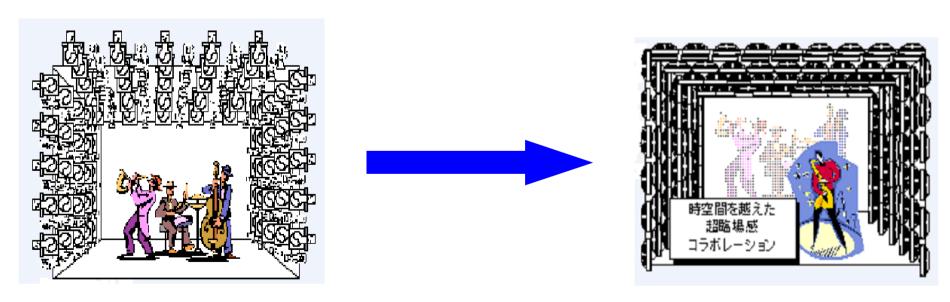
ESTIMATION OF SOUND SOURCE POSITIONS USING A SURROUNDING MICROPHONE ARRAY

T. Okamoto, R. Nishimura, Y. Iwaya


Research Institute of Electrical Communication, Graduate School of Information Sciences, Tohoku University

Outline

- Introduction
- Surrounding Microphone Array
- Estimation of Sound Source Positions
 - MUltiple Signal Classification (MUSIC) method (R. O. Schmidt *et el.* 1986)
 - Spatial Smoothing Technique (T. Shan et al. 1985)
 - Developing RAP-MUSIC
- Performance Evaluation
- Conclusion

Introduction

• FIR³ (Fleld Recording, Recognition and Reproduction) system to record a sound field for later reproduction

Reconstructing the sound information in another place at another time

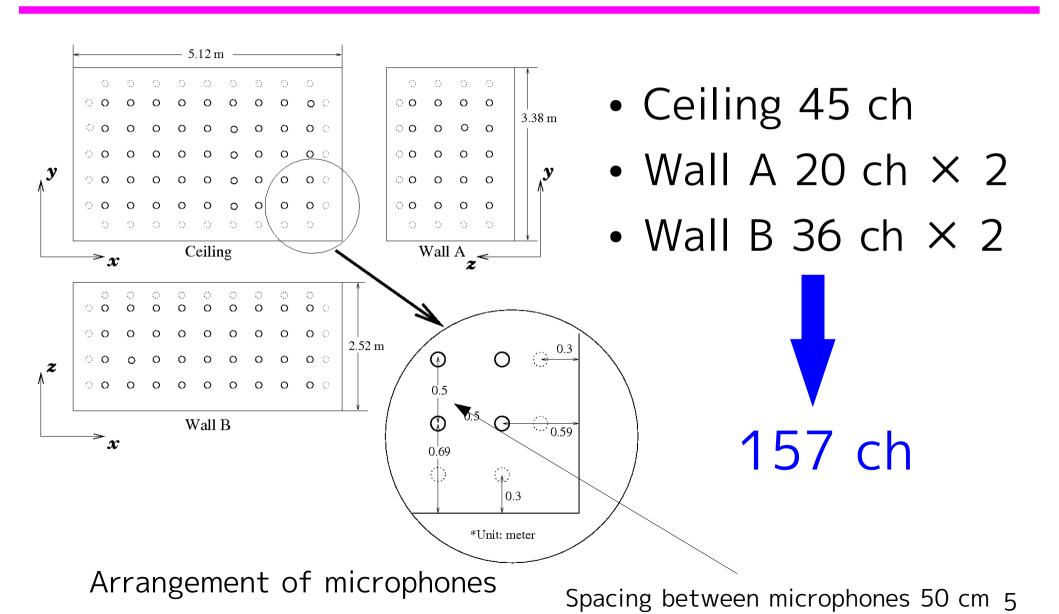
FIR³ Prototype

Recording Room

Today's our presentation,

Reproduction Room

Surrounding speaker array (157 ch) FOSTEX FE38E (157 ch)


Reverberant time of both rooms: 0.15 s

Estimation of Sound Source Positions using a Surrounding Microphone Array in a Reverberant Sound Field 4

Sound

information

Surrounding Microphone Array

Estimation of Sound Source Positions

• MUSIC method (R. O. Schmidt et al. 1986)

Input Signal

$$\boldsymbol{x}(\omega,t) = [x_1(\omega,t), x_2(\omega,t), \cdots, x_n(\omega,t)]^T$$

Spatial Correlation Matrix

$$\boldsymbol{R} = \mathrm{E}[\boldsymbol{x}(\omega, t)\boldsymbol{x}^H(\omega, t)]$$

Extraction

Base Vector of the orthogonal complements from *R*

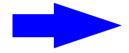
 $oldsymbol{V}$

Transfer Function between microphone i and search point (x, y, z)

$$a_i(\omega, x, y, z) = \frac{1}{r_i} e^{j\omega \frac{r_i}{c}}$$

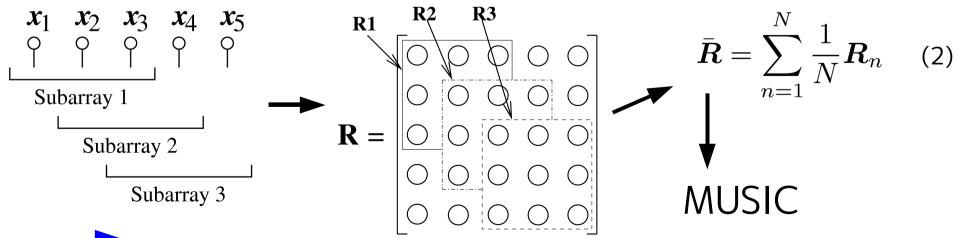
Steering Vector

$$\boldsymbol{a} = [a_1, a_2, \cdots, a_n]^T$$


MUSIC method

$$P(x, y, z) = \frac{1}{\parallel \boldsymbol{V}^{H} \boldsymbol{a}(x, y, z) \parallel^{2}}$$
(1)

P has a peak because a is orthogonal to V if a fits the source positions


Estimation of Sound Source Positions in Reverberant Sound Field

• MUSIC method (R. O. Schmidt et al. 1986)

Negative estimation in reverberant sound field !!!

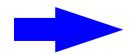
- Spatial Smoothing Technique (T. Shan et al. 1985)
 - Dividing the array into N subarray and calculating subarray's spatial correlation matrices

Reducing negative effect of reflected sounds 7

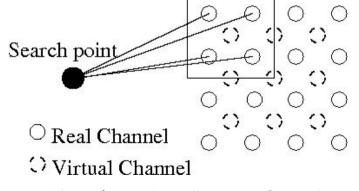
RAP-MUSIC (Rearrangement And Pre-smoothing for MUSIC)

- RAP-MUSIC (Re-arrangement And Pre-smoothing for MUSIC)
 - Making virtual channels from 4 channels at their median point
 - Converting 4 signals at the real channels into 4 signals at the virtual channels by both of amplitude and phase correlation

$$x_i'(t) = \frac{r_i}{r_i'} x_i(t) e^{-j\omega(\frac{r_i - r_i'}{c})}$$
(3)


 Averaging the signals at virtual channels after synchronizing the phase

II


Delay-and-Sum beamforming at virtual

channels

Applying MUSIC method to averaged signals

Reducing negative effect of reflected sounds more effectively !!!

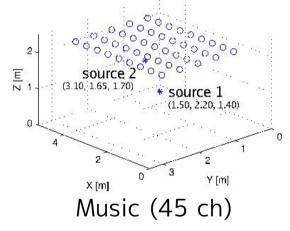
Keeping the phase of each signal at the virtual channel

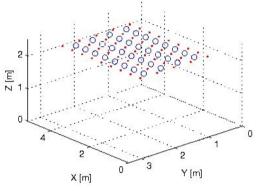
Performance Evaluation

Experiments of Estimation of Sound Source Positions

- Experimental Condition
 - Source 1: male voice (a/i/kya/ku) 63.7 dB Lceq
 - Source 2 : female voice (i/chi/yu/u) 50.4 dB Lceq
 - Sampling frequency: 48000 Hz
 - Time length of input signal: 1 s
 - Hamming window (512 points)
 - Frequency band: 500 ~ 8000 Hz
- Evaluation value of the peak of P

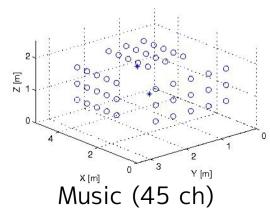
$$k = \frac{P}{P}$$
 at each search position (4)
 P at the source position

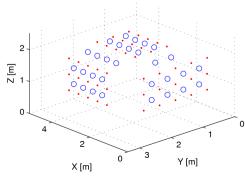

Experimental Condition



Using two equilateral 32-hedron point source loud-speakers (7 cm in diameter)

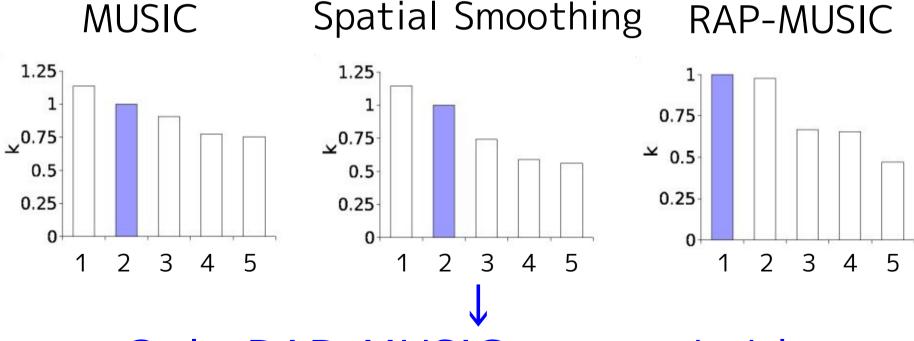
Arrangements of Microphones


2-dimensional arrangement (Pattern 1)



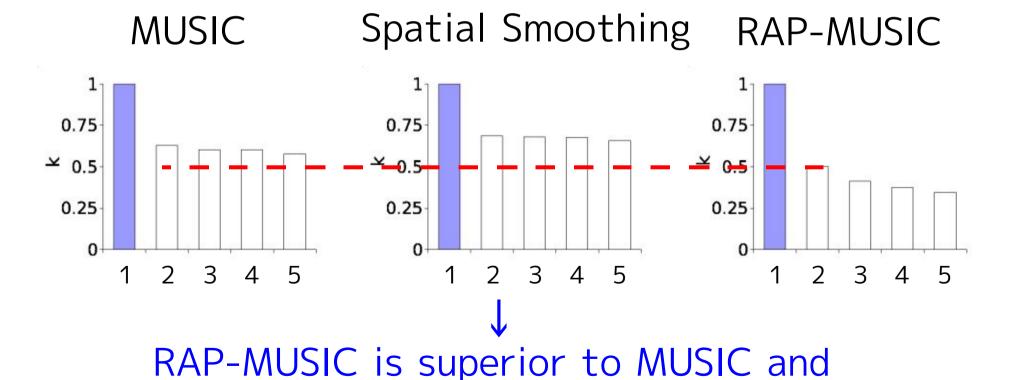
Spatial Smoothing Technique / RAP-MUSIC(32 ch)

• 3-dimensional arrangement (Pattern 2)



Spatial Smoothing Technique / RAP-MUSIC(30 ch)

Experimental Results


 Comparison of the performances of three methods for Source 1 (Pattern 1)

Only RAP-MUSIC succeeded in estimating correct position

Experimental Results

 Comparison of the performances of three methods for Source 1 (Pattern 3)

Spatial Smoothing Technique

in a Reverberant Environment

Conclusion

- Developing an effective estimation method of sound source positions using the surrounding microphone array for FIR³
 - Proposing RAP-MUSIC to reduce the influence of reverberant waves