SFC-L1: Sound Field Control With Least Absolute Deviation Regression

Takuma Okamoto

National Institute of Information and Communications Technology, Japan
okamoto@nict.go.jp

Abstract—Sound field control using loudspeaker arrays is an important
acoustic and audio signal processing applications. In sound field control,
least squares (LS) regression based on pressure matching or mode-
matching is typically introduced to derive the driving signals of
loudspeakers as a closed-form solution. The LS regression is a maximum-
likelihood estimation, in which the error is assumed to be Gaussian
distribution. Compared with the LS regression, the least absolute deviation
(LAD) regression, in which the error is assumed to be Laplace distribution,
is robust against outliers. In pressure matching-based sound field methods,
outliers appear at higher frequencies according to the spatial Nyquist
frequency. To improve the control accuracy for pressure matching-based
methods at high frequencies, this paper proposes SFC-L1, pressure
matching-based sound field control method with LAD regression instead
of LS regression. In the proposed method, the LAD regression combined
with L1 regularization is solved with gradient method simply implemented
on PyTorch. The results of computer simulations demonstrate that the
proposed LAD-based methods can improve the sound field control accuracy
at high frequencies compared with the conventional LS-based methods.
Additionally, PyTorch-based implementation, Torch-SFC, is open-sourced
for accelerating sound field control research.

1. INTRODUCTION

Sound field control with multiple loudspeakers is an important acoustic
and audio signal processing applications. Wave field synthesis [1]-
[3], higher-order Ambisonics (HOA) [4]-[6], and spectral division
method [7], [8] can analytically calculate the driving functions of
loudspeakers. However, these methods can be used for linear, planar,
circular and spherical arrays of loudspeakers.

Compared to these analytical methods, pressure matching [9]-[12]
and mode-matching [4], [13]-[17] are widely used for arbitrary
distributions of microphones and loudspeakers. In these methods,
least squares (LS) regression is typically introduced to derive the
driving signals of loudspeakers as a closed-form solution. The LS
regression is a maximum-likelihood estimation, in which the error is
assumed to be Gaussian distribution. Compared with the LS regression,
the least absolute deviation (LAD) regression, in which the error is
assumed to be Laplace distribution, is robust against outliers [18].
In pressure matching-based sound field methods, outliers appear at
higher frequencies according to the spatial Nyquist frequency.

To improve the control accuracy for pressure matching-based
methods at high frequencies, this paper proposes SFC-L1, pressure
matching-based sound field control method with LAD regression
instead of LS regression. In the proposed method, the LAD regression
combined with L1 regularization is solved with gradient method
simply implemented on PyTorch. The results of computer simulations
demonstrate that the proposed LAD-based methods can improve the
sound field control accuracy at high frequencies compared with the
conventional LS-based methods.

Additionally, PyTorch-based implementation used in computer
simulations conducted in Sec. 4, Torch-SFC, is open-sourced for
accelerating sound field control research.'

This study was partly supported by JSPS KAKENHI Grant Number
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2. CONVENTIONAL LEAST SQUARES-BASED PRESSURE
MATCHING METHODS

2.1. Simple pressure matching

The sound pressure at r, synthesized by L loudspeakers, is given by
L

Poyn(r) =Y di(m)G (rm) = g(r) " d, (1
=1

where d = [di(r1), -+ ,do(r)]" and g(r) = [G(r|r1), -,
G (r|r1)]" are the vectors of the driving signals of the loudspeakers
and transfer functions from r; to r, respectively.

In sound field control based on LS regression, the sound field inside
the target region V' is optimized by minimizing the objective function:

2

minidmize J = ‘g(r)—rd — pdes(T)| dr, 2)

reV
where pges(7) is the desired sound pressure at . In pressure matching-
based method, N control points are located inside V', and the cost
function J in (2) is approximated as the error between the synthesized
and desired pressures at the control points. The optimization problem
of pressure matching method with LS regression and L2 regularization’
is described as:

mini;nize [|Gd — paes||* + Apul|d]|2, 3
where G = lg(ry), - g(rn)]". Paes =
[Paes(T1), - -+, Paes(rn)] T, and Apm is a weighting parameter,

respectively. Then, the driving signals of pressure matching method
with LS regression is solved as a closed-form:

-1
dpy = (GHG + )\PMI) G"pacs, 4
where I the identity matrix.

2.2. Weighted pressure matching

Although (4) only considers the sound pressures on the control
points, the sound pressures throughout the target region V' can be
considered by weighted pressure matching [15]. In weighted pressure
matching, sound pressures without the control points can be estimated
by kernel interpolation of sound field [19]. The optimization problem
of weighted pressure matching method with LS regression is defined
as:

mingnize (Gd — pdcs)HWpM(Gd — Pdes) + Awpm||d]]2, (5)
where A\wpwm is also a weighting parameter. Wpy is defined as:

Wini = (@AD" [ s w(r) dr(w + D ©

reV
(\I’)n,n’ = jO(kHrn — Ty H)a 7
k(r) = [o(kllr = i), -, jo(kllr —rn D], ®)

2Lasso-based pressure matching introduces L1 regularization in (3) for
obtaining sparse solution [11], [12].
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Fig. 1: Spatial weighting functions where 7¢ is the center of the synthesis
area.
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Fig. 2: Proposed method to obtain driving signals for least absolute deviation
regression-based sound field control with backpropagation.

where k and jo are the wavenumber and O-th order spherical Bessel
function [20], respectively. A is also a weighting parameter. Then,
the driving signals of weighted pressure matching method with LS
regression is also solved as a closed-form:

1
dwrm = (GHWPMG + )\PMI) G"WonDdes. )

By introducing (9) instead of (4), the control accuracy can be improved
at higher frequencies. Weighted pressure matching can be regarded as
a special case of weighted mode matching with spherical harmonic
spectra estimated with infinite-dimensional harmonic analysis [21].

3. PROPOSED LEAST ABSOLUTE DEVIATION-BASED
PRESSURE MATCHING METHOD: SFC-L1

3.1. Pressure matching with least absolute deviation

In the proposed method, the cost function 7 in (2) is replaced with
LAD regression. Additionally, the spatial weighting function w(r)
used in weighted mode matching [14], such as uniform or Gaussian
(Fig. 1),3 is also introduced in the cost function. Then, the cost function
of the proposed method is defined as:
minidmize J = ‘w(’r) (g(r)Td fpdes(r))‘ dre.  (10)
reVv
Compared with (2), (10) cannot be directly solved because it is not a
closed-form. Some methods to solve the LAD regression have been
investigated, such as simplex-based methods including Barrodale-
Roberts algorithm [22], iteratively re-weighted least squares [23],
Wesolowsky’s direct descent method [24], Li-Arce’s maximum
likelihood approach [25], and recursive reduction of dimensionality
approach [26].

3The spatial weighting function w () can also be directly applied to pressure
matching and weighted pressure matching.
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Fig. 3: Aarrangements of 20 loudspeakers (black circles) and 81 control points
(blue cross marks). Red circle is control target region V.

3.2. Least absolute deviation regression with PyTorch

Although the previous methods to solve the LAD regression have been
investigated, (10) can also be easily solved by gradient method with
backpropagation [27], which can be simply implemented on a Python-
based deep learning toolkit, PyTorch [28]. PyTorch can directly treat
complex-valued optimization. In the proposed method, two linear
layers with complex weight matrices Wle(IXL/) and WZG(LIXL)
without biases are introduced to obtain the proposed driving signals
di. 2 Then, the loss function to solve (10) is defined as:

Li1 = |wT(GdL1 — Pdes)| + Avilldri]l1, (11)

where w = [w(r1), -+ ,w(ry)]", and Ap; is also a weighting
parameter. Compared to (3) and (5) with L2 regularization, (11)
introduces L1 regularization rather than L2 regularization. This
is because L1 regularization can obtain more stable solution at
low frequencies according to the results of preliminary computer
simulations. By updating the complex weight matrices Wf“xy)
and WQE(L,XL), di1 can be optimized (Fig. 2). By introducing the
proposed method with LAD regression, improving the control accuracy
at higher frequencies can be expected.

By replacing the loss function in (11), other sound field control
methods can also be easily solved, such as Lasso-LS-based pressure
matching [11], [12], and multiple sound spot synthesis [29]-[33].
Investigating sound field control with backpropagation for other tasks
is future work.

4. COMPUTER SIMULATIONS
4.1. Simulation conditions

Computer simulations were performed to evaluate the proposed
approach and compare it with the conventional LS-based methods.
All the simulations were conducted on Python and PyTorch. In all
the simulations, a 3D free-field was assumed and the speed of sound
c was 343.36 m/s. Then, the transfer function between a loudspeaker
at r; and a control point 7, is three-dimensional free-field Green’s
function given as [20]:

eIFkITi—rnl

Gsp(ri,T0) (12)

- Amlry — vy’
In the simulations, the primary sound field was three-dimentional
sound field propagated from a point source located at x =4 m, y =
5 m, z = 0 m. Then, 2.5-dimensional sound field control [5], [7] with
a square loudspeaker array on the horizontal plane is considered. 20

4Using two layers can realize higher control accuracy at low frequencies
than using one layer according to the results of preliminary simulations.
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Fig. 4: Results of original and synthesized sound field (upper) and synthesis error (lower) for f = 1 kHz and 3 kHz, respectively. PM and WPM are
conventional pressure matching and weighted pressure matching with least squares regression. SFC-L1 is proposed pressure matching with least absolute
deviation regression. Uniform and Gaussian are spatial weighting windows. White and red circles are loudspeakers and control regions.

loudspeakers and 81 control points (= microphone array) were located
on the horizontal plane (z = 0). The arrangements of loudspeakers
and control points are shown in Figure 3. The control target region
V' is inside a circle with a radius of 0.5 m.

Apm in (4), A in (6), Awpwm in (9) and Ar; in (11) were set to
Omax(G™G) X 107°, 0pmax () X 107°, max (GH WM G) x 1072,
and 10_5, respectively. omax (+) denotes the maximum eigenvalue. For
weighted pressure matching and proposed SFC-L1, spatial weighting
functions (uniform and Gaussian with o = 0.2) in Fig. 1 were
introduced. In weighted pressure matching, [ _,, k(r) w(r) dr
in (6) was numerically calculated where r was discretized at
0.01 m intervals. jo in (7) and (8) was calculated using SciPy
(https://scipy.org). In the proposed SFC-L1, Adam optimizer [34]
with a learning rate of 10~2 was introduced to minimize L1 in
(D). L and L in WEPXE) and WEEXD) were 20. Although the
number of parameter updates for calculating (11) was 4,000, it can
be calculate in about 0.6 seconds by using Apple MacBook Air M2
2023.

As the evaluation criteria, the synthesis error at » was introduced:

_ 2
E('r) _ 1010g10 |pdes(r) psyn(r”

13
[Paea(r) 2 (3

The L2 norm of the driving signals ||d||2 was also measured to
evaluate the stability. These criteria were evaluated up to f = 3 kHz.

4.2. Results

Figure 4 shows the results of synthesized sound field and synthesis
error for f = 1 kHz and 3 kHz, respectively. Additionally, Figure 5
shows the results of the averaged synthesis error inside the control
region V. Furthermore, Figure 6 shows the results of the L2 norm of
the driving signals. The results of Figures 4 and 5 indicated that the
proposed methods with uniform and Gaussian weights outperform
the conventional pressure matching and weighted pressure matching
for f > 1.5 kHz in terms of the synthesis accuracy. Additionally,
the results of Fig. 6 suggested the stability of the proposed method.
Consequently, the effectiveness of the proposed SFC-L1 with LAD
regression solved by backprppagation is validated for high frequencies.

5. CONCLUSION

To improve the control accuracy for pressure matching-based methods
at high frequencies, this paper proposed SFC-L1, pressure matching-
based sound field control methods with LAD regression instead of LS
regression. In the proposed method, the LAD regression combined with
L1 regularization is solved with gradient method simply implemented
on PyTorch. The results of computer simulations showed that the
proposed LAD-based methods can improve the sound field control
accuracy at high frequencies compared with the conventional LS-based
methods. PyTorch-based implementation, Torch-SFC, is open-sourced
for accelerating sound field control research.
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