# HEEE CASE AND A CONTRACT OF A

## 2.5D higher-order Ambisonics for a sound field described by angular spectrum coefficients

Takuma OKAMOTO, National Institute of Information and Communication Technology, Japan



1. Introduction

Analytical approaches to sound field recording and reproduction



- Analytical conversion of sound field representation
  - Analytical driving function of 2.5D synthesis for circular secondary sources
    Sound field recorded by linear microphone arrays can be reproduced by circular loudspeaker arrays

#### 2. Analytical conversion of sound field representation

Sound field represented by angular spectrum coefficients

 $P(x, y, \omega) \simeq \frac{1}{2\pi} \int_{-k}^{k} \tilde{P}(k_x, \omega) e^{-j\sqrt{k^2 - k_x^2}y} e^{-jk_x x} dk_x \quad \text{Spatial inverse Fourier transform}$ 

Circular harmonics expansion of plane wave

$$e^{-jkr\cos(\phi-\phi_k)} = \sum_{m=-\infty}^{\infty} (-j)^m J_m(kr) e^{jm(\phi-\phi_k)}$$

- Analytical conversion of sound field representation from angular spectrum to circular harmonics expansion
- Coordinate system is transformed as  $[x, y] \rightarrow [r, \phi], k_x \rightarrow k\cos(\phi_k)$

$$P(r,\phi,\omega) = \frac{k}{2\pi} \int_0^{\pi} \tilde{P}(\phi_k,\omega) e^{-jkr\cos(\phi-\phi_k)}\sin(\phi_k)d\phi_k$$

Analytical solution for 2D sound field

$$\mathring{P}_{2\mathrm{D},m}(r,\omega) = \frac{k(-j)^m J_m(kr)}{2\pi} \int_0^\pi \tilde{P}(\phi_k,\omega) \sin(\phi_k) e^{-jm\phi_k} d\phi_k$$

#### 3. Proposed formulation

Sound field recorded by linear receiver (Spatial Fourier transform)

$$\tilde{P}(\phi_k,\omega) = \left(\tilde{P}(k_x,\omega) = \int_{-\infty}^{\infty} P(x,0,\omega)e^{jk_xx}dx\right) = \int_{-\infty}^{\infty} P(x,0,\omega)e^{jk\cos(\phi_k)x}dx$$

**2.5D HOA for circular secondary sources** (J. Ahrens *et al.* 2008.)

$$\begin{split} \hat{D}_{2.5\mathrm{D},m}(r=0,r_{0},\omega) &= \frac{1}{2\pi r_{0}} \cdot \frac{\check{P}_{|m|}^{m}(\omega)}{-jkh_{|m|}^{(2)}(kr_{0})Y_{|m|}^{m}(\pi/2,0)^{*}} \\ & \\ & \\ \text{Integrated with} \\ (k/2\pi)\check{P}(\phi_{k},\omega)\sin(\phi_{k}) \\ & \\ \text{from } \phi_{k} = 0 \text{ to } \pi \\ & \\ \text{Foint source :} \\ \check{P}_{|m|}^{m}(\boldsymbol{r}_{\mathrm{s}},\omega) &= -jkh_{|m|}^{(2)}(kr_{\mathrm{s}})Y_{|m|}^{m}(\theta_{\mathrm{s}},\phi_{\mathrm{s}})^{*} \end{split}$$

Analytical driving function of 2.5D synthesis

$$\mathring{D}_{2.5\mathrm{D},m}(r_0,\omega) = \frac{(-j)^{|m|-1}}{\pi r_0 h_{|m|}^{(2)}(kr_0)} \int_0^\pi \tilde{P}(\phi_k,\omega) \sin(\phi_k) e^{-jm\phi_k} d\phi_k$$

### 4. Computer simulations

Reproduced sound field and reproduction error



This study was partly supported by JSPS KAKENHI Grant Number 15K21674.