

Generation of multiple sound zones by spatial filtering in wavenumber domain using a linear array of loudspeakers

Takuma OKAMOTO

National Institute of Information Communications and Technology (NICT), Japan

Presentation contents

Introduction

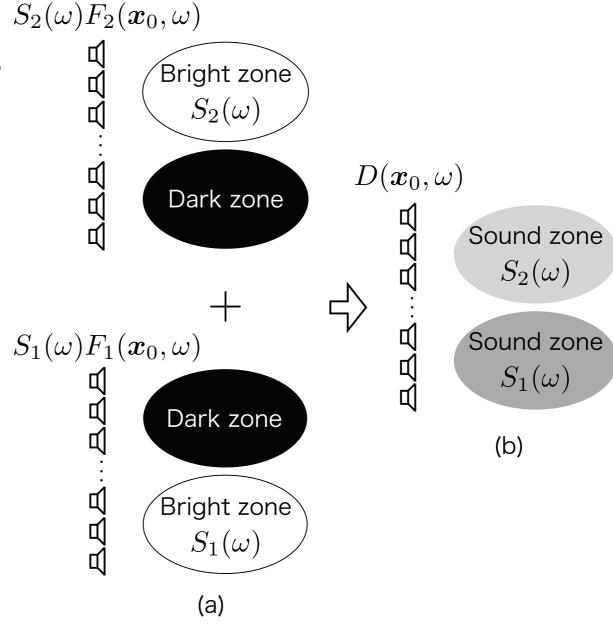
Acoustically bright zone or multi-zones generation using loudspeakers

Purpose

- Conventional methods and their problems
- Novel approach

Proposed method

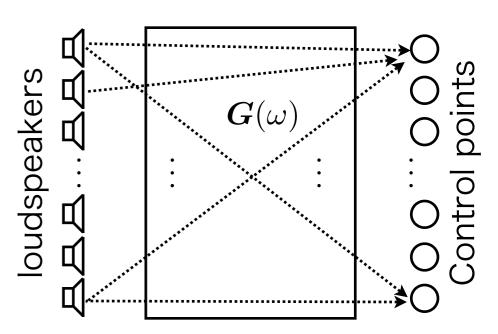
- Basic theory : Spectral division method (SDM)
- Analytically-derived spatial filters in wavenumber domain
- Computer simulations
- Demonstrations


Concluding remarks

Introduction

- Generation of acoustically bright and dark zones using an array of loudspeakers
 - (a) generating bright and dark zones
 - (b) multiple spots generation

- Applications
 - ** Personal audio system
 - * Multiple-language guide system
 - * Virtual reality applications


without headphone

Previous methods and their problems

- Most methods based on multiple points control
 - Principle
 - * Numerical calculation of the inverse of the spatial correlation matrix
 - Problems
 - * Quite unstable
 - * Iterative calculation for deciding regularization parameter

(e.g. J.-W. Choi et al. in JASA, 2002.)

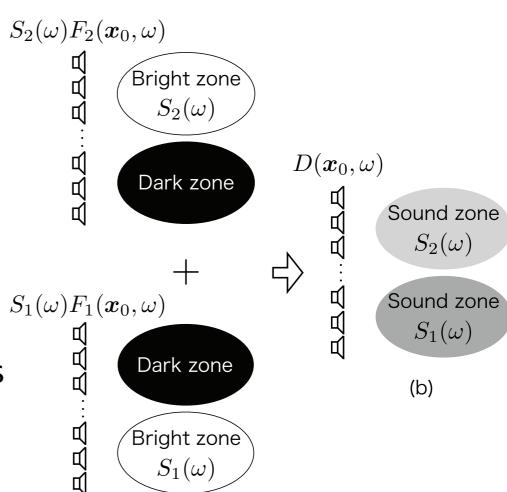
- Energy difference maximization (EDM)
 - Principle

(M. Shin *et al.* in *JASA*, 2010.)

- * Numerical calculation of the eigenvector of the spatial correlation matrix
- Problem
 - * Iterative calculation for deciding tuning factor

Novel approach

- Problems of conventional methods
 - Unstable
 - Iterative calculation
- 3 characteristics of proposed method
 - Analytically derived stable filters
 - No iterative calculation
 - Implemented by using actual 64 loudspeakers



- left Sound source signal : $S(\omega)$
- Driving signals of loudspeakers
 - * (a) Generating bright and dark zone

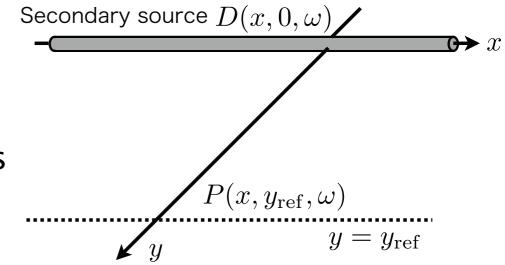
$$D(\boldsymbol{x}_0,\omega) = S_1(\omega) F_1(\boldsymbol{x}_0,\omega)$$

(b) Generating multiple sound zones

$$D(\boldsymbol{x}_0, \omega) = \sum_{i=1}^{M} S_i(\omega) F_i(\boldsymbol{x}_0, \omega)$$

How to calculate?

(a)


Basic theory

- Spectral division method (SDM) (J. Ahrens et al. in IEEE ASLP., 2010.)
 - Sound field reproduction using planer or linear arrays of loudspeakers
 - * Driving signals of secondary sources are analytically derived
 - * Acoustical single layer potential in a plane

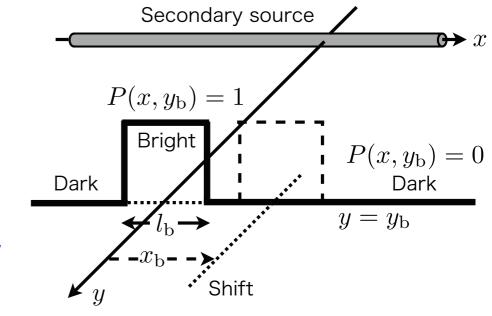
$$P(\boldsymbol{x},\omega) = \int_{-\infty}^{\infty} D(\boldsymbol{x}_0,\omega) G_{3D}(\boldsymbol{x} - \boldsymbol{x}_0,\omega) dx_0$$

$$\tilde{P}(k_x, y, \omega) = \tilde{D}(k_x, \omega) \cdot \tilde{G}(k_x, y, \omega)$$

* Driving signals of secondary sources

$$\tilde{D}(k_x, \omega) = \frac{\tilde{P}(k_x, y_{\text{ref}}, \omega)}{\tilde{G}(k_x, y_{\text{ref}}, \omega)} \qquad \boxed{\mathcal{F}_x} \qquad D(x, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\tilde{P}(k_x, y_{\text{ref}}, \omega)}{\tilde{G}(k_x, y_{\text{ref}}, \omega)} e^{-jk_x x} dk_x$$

* Driving signals in each wavenumber domain is completely orthogonal each other and much stable rather than multiple points control


Proposed method

Analytically derived spatial filters in wavenumber domain

Spatial filters in wavenumber domain

$$\tilde{F}(k_x, \omega) = \frac{\tilde{P}(k_x, y_{\text{ref}}, \omega)}{\tilde{G}(k_x, y_{\text{ref}}, \omega)}$$

$$P(x,y_{\mathrm{ref}},\omega)=1 \ P(x,y_{\mathrm{ref}},\omega)=0 \$$
 Modeled by Rectangular window

$$P(x, y_{\rm b}) = \Pi\left(\frac{x}{l_{\rm b}}\right) = \begin{cases} 1, & \text{for } |x| \le l_{\rm b}/2 \\ 0, & \text{elsewhere} \end{cases} \quad \tilde{P}(k_x) = l_{\rm b} \, \text{sinc}\left(\frac{k_x l_{\rm b}}{2\pi}\right)$$

Shift theorem introduced to shift rectangular window along with x-axis

$$\tilde{P}_{\text{shift}}(k_x) = \tilde{P}(k_x) \exp(jk_x x_b) = l_b \operatorname{sinc}\left(\frac{k_x l_b}{2\pi}\right) \exp(jk_x x_b)$$

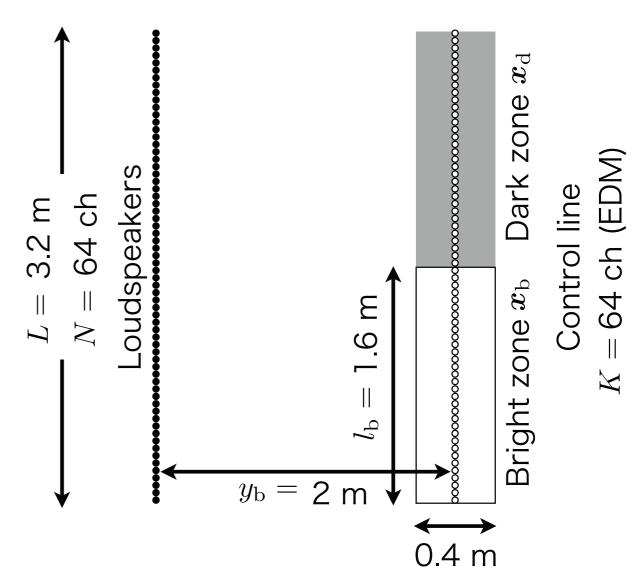
Spatial filters for generating bright and dark zones

$$ilde{F}(k_x,\omega) = rac{l_{
m b}\, {
m sinc}\, (k_x l_{
m b}/2\pi) \exp(jk_x x_{
m b})}{ ilde{G}(k_x,y_{
m b},\omega)} \qquad \left(egin{array}{c} {
m Arbitrary length}: l_{
m b} \ {
m Arbitrary position}: [x_{
m b},y_{
m b}]^{
m T} \end{array}
ight)$$

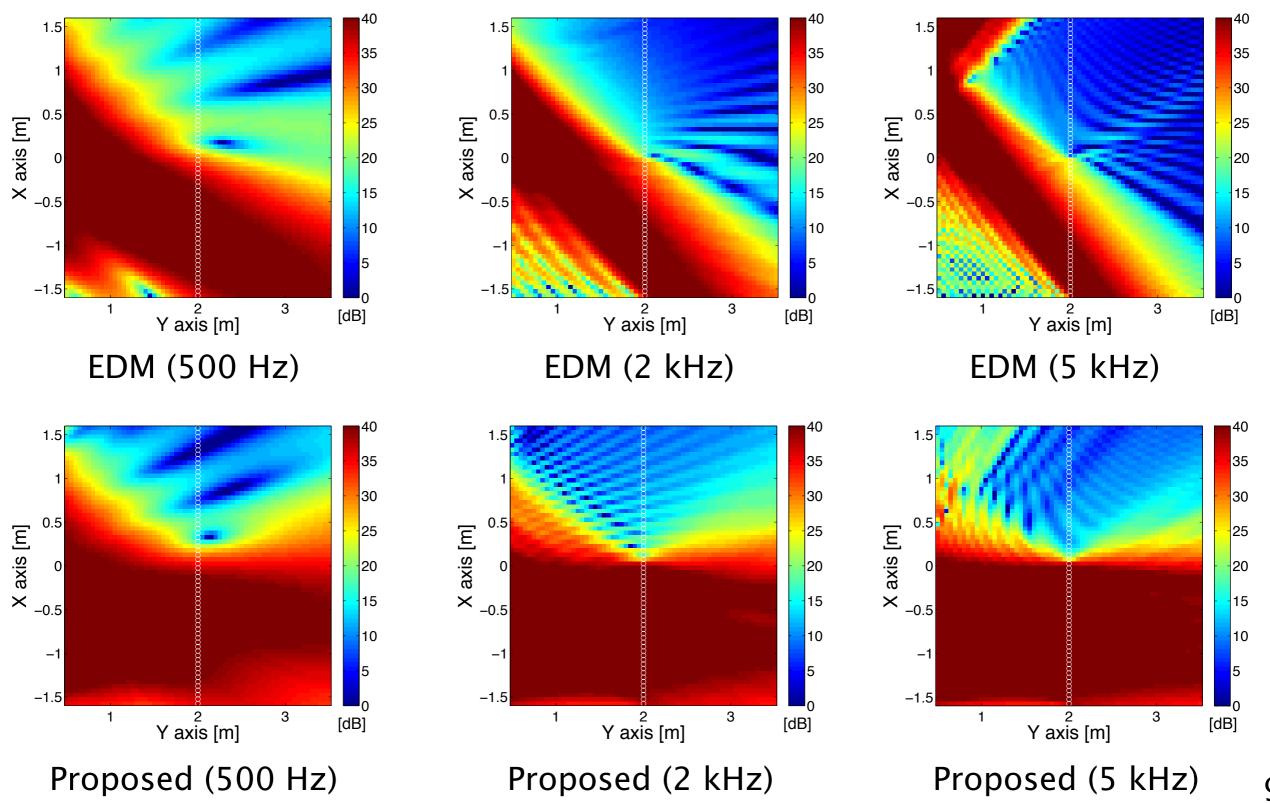
Computer simulations

Simulation condition

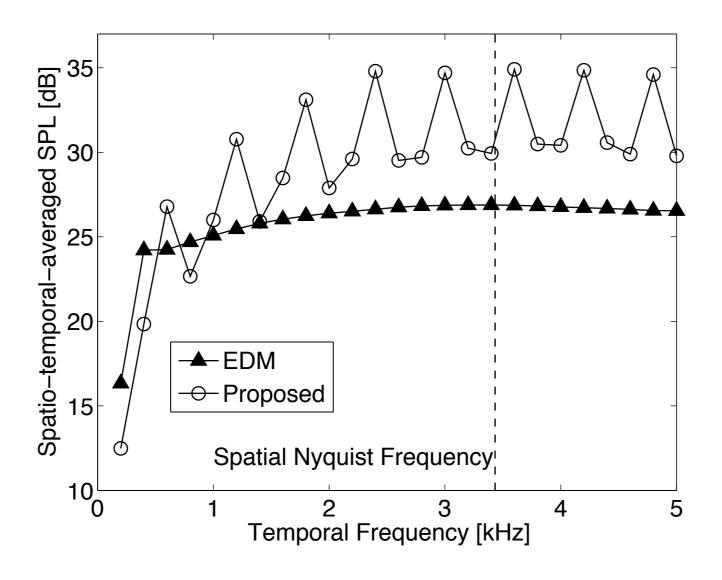
- Speed of sound : 343.25 m/s
- distance between adjacent loudspeakers: 0.05 m
- Tuning factor for EDM: 0.9999


Evaluation values

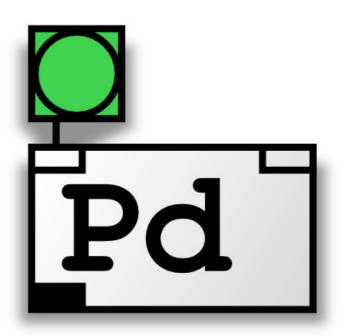
Sound pressure level


$$P_{\mathrm{SPL}}(\boldsymbol{x}, \omega) = 10 \log_{10} \left| \hat{P}(\boldsymbol{x}, \omega) \right|^2$$

Bright to dark ratio


$$BDR(\omega) = 10\log_{10} \frac{\sum_{\boldsymbol{x}_{b}} \left| \hat{P}(\boldsymbol{x}_{b}, \omega) \right|^{2}}{\sum_{\boldsymbol{x}_{d}} \left| \hat{P}(\boldsymbol{x}_{d}, \omega) \right|^{2}}$$

Simulation results : $P_{\mathrm{SPL}}(oldsymbol{x})$



Simulation results: BDR

$$BDR(\omega) = 10\log_{10} \frac{\sum_{\boldsymbol{x}_{b}} \left| \hat{P}(\boldsymbol{x}_{b}, \omega) \right|^{2}}{\sum_{\boldsymbol{x}_{d}} \left| \hat{P}(\boldsymbol{x}_{d}, \omega) \right|^{2}}$$

DEMO 1 implemented by PureData

DEMO 2 implemented by actual linear array of loudspeakers

Concluding remarks

- Acoustically bright zone or multi-zones generation using loudspeakers
 - Analytically derived stable filters
 - No iterative calculation
 - Implemented by using an actual linear array of 64 loudspeakers

Grazie mille!!

- Acknowledgement
 - This study is partly supported by Grant-in-Aid for Young Scientists B (No. 25871208) from JSPS