

Tacotron-based acoustic model using phoneme alignment for practical neural text-to-speech systems

Takuma Okamoto¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹

¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

1. Introduction

Conventional text-to-speech (TTS) systems

- Duration and acoustic pipeline models with source-filter vocoders
 - Widely used in practical systems but not high quality synthesis

End-to-end neural TTS systems

- Sequence-to-sequence (seq2seq) model with neural vocoders
 - # Jointly optimizing duration and acoustic models and <u>directly converting character</u> or phoneme sequences to acoustic features (mel-spectrogram)
- State-of-the art end-to-end TTS models
 - # Tacotron 2 with autoregressive WaveNet vocoder: <u>Human guality synthesis</u>
 - ClariNet (Deep voice 3 + parallel WaveNet): Entire end-to-end real-time neural TTS
 - Transformer-based TTS: <u>Faster training than Tacotron 2</u>

Problem of seq2seq models due to attention prediction error

- Speech samples sometimes cannot be successfully synthesized
- * Crucial problem for practical TTS systems

Real-time, high-fidelity, and stable neutral TTS systems with Tacotron structure

- Introducing conventional duration models to sophisticated seg2seg acoustic models
 - * HMM-based forced alignment can be relatively easily obtained
 - * Conventional duration model can estimate almost accurately predict phoneme durations

2. Seg2seg acoustic model with full-context label input

Tacotron 2 with full-context label input for pitch accent languages

- Input: Full-context label (130 dims)
- Output: Mel-spectrogram (80 dims)

Real-time neural TTS with WaveGlow vocoder

Real time factor (RTF) with a GPU: 0.16

	Input text Text analyzer	Tacotron encoder 1 × 1 conv layer Iver I layers
r	Full-context label (Phoneme-level)	Location sensitive attention
		2 layer pre-net 2 LSTM layers
	Acoustic features (Frame-level)	5 conv layer post-net Linear projection
		Neural vocoder Speech waveform Stop token
	T Okom	oto ot al Interanacah 2010

I. Okamoto et al., Interspeech 2019

This model is also unstable due to attention-based seg2seg structure

FAT

Tacotron with forced attention (FAT)

CAM

- Encoded features are duplicated and redundant for decoder
 - # FAT cannot outperform Tacotron (Y. Yasuda et al., ICASSP 2019)

Proposed acoustic model with Tacotron decoder and phoneme duration (PAM)

- HMM-based forced alignment and bidirectional LSTM-based duration model
- Acoustic model with bidirectional LSTM and decoder of Tacotron 2
 - Redundancy in FAT can be reduced

4. Experiments with WaveGlow vocoder

- Simulation condition
 - Japanese Female corpus: 18 h
 - Acoustic features
 - Mel-spectrogram: 80 dims, 12.5 ms
 - * Vocoder features (fo, vuv, mel-cepstrum): 1 + 1 + 35 = 37 dims. 5 ms

 $P\Delta M$

Results

RTF with an NVIDIA Tesla V100

Predicted attention

PAM

063 0 015 0	066 .13 .08
015 0	.08
015 0	
	.08
)49 0	.12
049 0	.12
061 0	.13
061 0	.13
- 0	.06
045 0	.10
38 0	.20
- 2	.00
06 2	00
	061 0 061 0 061 0 045 0 38 0 - 2

MOS results with 15 listening subjects

Real-time, high-fidelity, and stable neural TTS can be realized by PAM