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Tacotron-based acoustic model using phoneme alignment
for practical neural text-to-speech systems

15th Dec. 2019

NIC/7?

&

Takuma Okamoto?', Tomoki Toda?1, Yoshinori Shiga', and Hisashi Kawai'
"National Institute of Information and Communications Technology, Japan, 2Nagoya University, Japan

1. Introduction
M Conventional text-to-speech (TTS) systems
M Duration and acoustic pipeline models with source-filter vocoders
¥ Widely used in practical systems but not high quality synthesis

B End-to-end neural TTS systems

B Sequence-to-sequence (seg2seq) model with neural vocoders

¥ Jointly optimizing duration and acoustic models and directly converting character
or phoneme sequences to acoustic features (mel-spectrogram)

B State-of-the art end-to-end TTS models
¥ Tacotron 2 with autoregressive WaveNet vocoder: Human quality synthesis
% ClariNet (Deep voice 3 + parallel WaveNet): Entire end-to-end real-time neural TTS
¥ Transformer-based TTS: Faster training than Tacotron 2

B Problem of seq2seq models due to attention prediction error
M Speech samples sometimes cannot be successfully synthesized
¥ Crucial problem for practical TTS systems

B Real-time, high-fidelity, and stable neutral TTS systems with Tacotron structure
B Introducing conventional duration models to sophisticated seq2seq acoustic models
¥ HMM-based forced alignment can be relatively easily obtained
¥ Conventional duration model can estimate almost accurately predict phoneme
durations

2. Seg2seq acoustic model with full-context label input

B Tacotron 2 with full-context label input for pitch accent languages
B Input: Full-context label (130 dims)
B OQutput: Mel-spectrogram (80 dims)
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This model is also unstable due to attention-based seq2seq structure

B Japanese Female corpus: 18 h
B Acoustic features
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3.Proposed method
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(Tacotron with forced attention)

CAM FAT
Tacotron with forced attention (FAT)
B Encoded features are duplicated and redundant for decoder
¥ FAT cannot outperform Tacotron (Y. Yasuda et al., ICASSP 2019)

with Tacotron decoder and phoneme duration

PAM

Proposed acoustic model with Tacotron decoder and phoneme duration (PAM)
B HMM-based forced alignment and bidirectional LSTM-based duration model
B Acoustic model with bidirectional LSTM and decoder of Tacotron 2
¥ Redundancy in FAT can be reduced

4. Experiments with WaveGlow vocoder
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Real-time, high-fidelity, and stable neural TTS can be realized by PAM



