ASRU 2017

19th Dec. 2017.

Subband WaveNet with overlapped single-sideband filterbanks

Takuma OKAMOTO¹, Kentaro Tachibana¹, Tomoki Toda^{2,1}, Yoshinori Shiga¹, and Hisashi Kawai¹ ¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

1. Introduction

Target: High-quality statistical parametric speech synthesis

Conventional:

State-of-the-art:

- HMM to DNN
- WaveNet
- 2. End-to-end: Char2way, Deep voice, Tacotron

Additional input h

 $\downarrow M$

- WaveNet: Dilated causal convolutional NN-based raw audio generative model
 - Autoregressive model to directly predict raw audio samples

$$p(x|h) = \prod_{t=1}^{r} p(x(t)|x(1), \dots, x(t-1), h)$$

- ★ Categorical problem (8bit µ-law encoding) rather than regression
- Synthesis speed problem since past samples are required
 - * Parallel WaveNet: Fast generation but complicated training architecture
- Proposal: Rapid and high quality synthesis for WaveNet with simple approach
 - Parallel training and synthesis based on Multirate signal processing
 - Realizing high-quality synthesis with square-root Hann window-based filterbanks

2. Subband WaveNet

- Single-sideband (SSB) filterbank
 - 1. Dividing fullband signal into N subband signals
 - 2. Decimating them with a factor M
 - * Signal length and sampling frequency: 1/M
 - 3. Upsampling and inverse processing
 - * Reconstructing fullband signal

WaveNet WaveNet WaveNet for 2nd band Subband WaveNet (a) Training stage Additional input h WaveNet WaveNet WaveNet for N-th band

Single-sideband modulation-based analysis filtering

 $\downarrow M$

Subband WaveNet

WaveNet training and synthesis for each subband waveform Enabling parallel synthesis: M times synthesis speed

3. Experiments

- Japanese speech corpora with a sampling frequency of 32 kHz
- Female and male corpora: 4.7 and 3.7 hours for training sets, 100 utts for test sets
- Filterbank setting (Decimation factor: M=4)
 - LPF-MD: N=4 with simple lowpass filter
 - LPF-OL: N=9 with simple lowpass filter
 - SQRT-Hann-OL: N=9

with overlapped square-root Hann window-based analysis/synthesis filter

- WaveNet models
 - Unconditional WaveNet training and synthesis without additional input
 - ** Predicting $\hat{x}(t)$ from correct input $[x(1), \cdots, x(t-1)] \Rightarrow \hat{x} = [\hat{x}(1), \cdots, \hat{x}(T)]$
 - Receptive field: 0.192 s, mini-batch size: 2.5 s with Adam optimizer
 - Dilation channel: 32, Residual channel: 32, Skip channel: 512
 - Number of parameter update: 20 k (Fullband), 10 k (Subband)
- Results of synthesis speed with CPUs: Female (3.85 s) and male (3.87 s)
 - Fullband: 11.40 and 11.21 mins, Subband: 2.68 and 2.65 mins

 ⇒ about 4 times
- Results of objective evaluations
 - Proposed SQRT-Hann-OL colors each subband waveform
 - # Improving prediction accuracy: Realizing higher-quality synthesis than fullband

- SQRT-Hann (2nd) LPF-OL (5th) **Fullband** LPF-OL (2nd) Results of subjective evaluations: Paired comparison with 21 listening subjects
- Significant quality improvement by proposed SQRT-Hann-OL

	Fullband	SQRT-Hann-OL	Neutral	p-value	Z-score		Fullband	SQRT-Hann-OL	Neutral	<i>p</i> -value	Z-score
Female (%)	33 (6.3)	413 (78.7)	79 (15.0)	$\ll 10^{-10}$	-18.0	Male (%)	31 (5.9)	439 (83.6)	55 (10.5)	$\ll 10^{-10}$	-18.8