

E2E-S2S-VC:

End-to-end sequence-to-sequence voice conversion

Takuma Okamoto¹, Tomoki Toda^{2,1}, and Hisashi Kawai¹

¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan

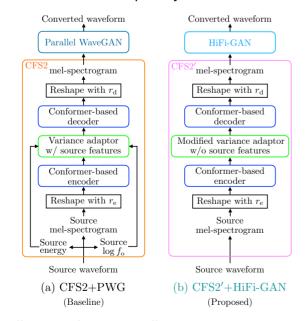
Demo samples and source code

Demo samples: Hi-Fi-CAPTAIN corpus for Japanese used in experiments

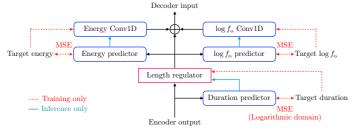
Source code based on ESPnet2-TTS

- Recipe for CMU-ARCTIC corpus
- Recipe for Hi-Fi-CAPTAIN corpus used in experiments

https://ast-astrec.nict.go.jp/demo_samples/e2e-s2s-vc/


1. Introduction

- Voice conversion (VC) methods
- Framewise VC based on frame-by frame conversion
 - Parallel data not required
 - * Difficult to convert duration and prosody between source and target speakers
 - # End-to-end models have been investigated (e.g. NVC-Net)
- Sequence-to-sequence (S2S) VC
 - * Parallel data required
 - * Can convert duration and prosody by S2S manner
- Baseline: non-autoregressive (AR) S2S-VC: CFS2+PWG
 - Features
 - ** Conformer-Fastspeech 2 (CFS2)-based non-AR conversion model with Parallel WaveGAN (PWG) neural vocoder
 - ** Faster and more stable by non-AR structure compared with conventional Transformer-based AR models
 - Four problems
 - 1. Three models (teacher Transformer, CFS2, PWG) are separately trained -> they cannot be jointly optimized
 - 2. Unstable alignment due to teacher AR-Transformer
 - 3. HiFi-GAN neural vocoder outperforms PWG
 - 4. Energy and fundamental frequency of source speaker required


2. Extended model

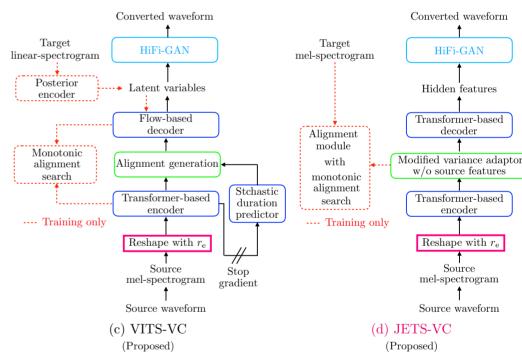
CFS2'+HiFi-GAN

CFS2': CFS2 with modified variance adapter without source energy and fundamental frequency features

Modified valiance adapter predicts target energy and fundamental frequency features from source mel-spectrogram input

Hi-Fi-CAPTAIN:

Released!

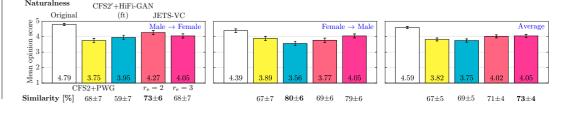

High-fidelity and high-capacity conversational speech synthesis corpus developed by NICT

- 1 female and 1 male (English): 14K utts (parallel: 13K) 1 female and 1 male (Japanese): 19K utts (parallel: 18.5K) ESPnet2-TTS recipe for JETS-based E2E-TTS

https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/

3. Proposed methods

- End-to-end text-to-speech (E2E-TTS) models: VITS and JETS
 - VITS: VAE + flow + HiFi-GAN + monotonic alignment search (MAS)
 - JETS: Fastspeech 2 + HiFi-GAN + MAS
- Proposed E2E-S2S-VC: VITS-VC and JETS-VC
 - Introducing VITS and JETS for E2E-TTS models into S2S-VC
 - ** Source mel-spectrogram input can be directly converted to target speech waveform with a single neural network
 - * Using a reduction factor only for encoder to successfully train MAS for VC
 - * Can solve all the four problems in baseline model


4. Experiments

Experimental conditions

- Dataset: Parallel 1,000 utterances for Japanese in Hi-Fi-CAPTAIN
 - * Training: 950 utts, Validation: 25 utts, Evaluation: 25 utts
- Sampling frequency: 24 kHz
- Objective evaluation criteria: MCD, logf₀RMSE, CER and RTF
- Subjective evaluation criteria (N=20): MOS, speaker similarity

Results of experiments

	Male → Female			$Female \longrightarrow Male$			
Method	MCD [dB]	$\log f_{ m o}$ RMSE	CER [%]	MCD [dB]	$\log f_{ m o}$ RMSE	CER [%]	RTF
Original	N/A	N/A	1.0	N/A	N/A	1.2	
(Baseline) CFS2+PWG CFS2'+PWG	5.83 ± 0.52 5.50 ± 0.45	0.25 ± 0.07 0.24 ± 0.08	3.4 3.0	$4.74 \pm 0.26 \\ 4.76 \pm 0.23$	$0.20 \pm 0.04 \\ 0.18 \pm 0.06$	4.4 6.8	3.44 3.41
CFS2'+HiFi-GAN (ft) CFS2'+HiFi-GAN (jt)	5.31 ± 0.58 5.95 ± 0.60	0.22 ± 0.07 0.25 ± 0.06	4.4 12.7	4.49 ± 0.31 4.80 ± 0.32	0.19 ± 0.08 0.22 ± 0.08	5.8 12.5	0.72 0.72
VITS-VC ($r_{\rm e}=2$) VITS-VC ($r_{\rm e}=3$)	5.31 ± 0.43 5.36 ± 0.43	0.23 ± 0.08 0.22 ± 0.07	5.2 5.4	4.50 ± 0.30 4.58 ± 0.28	0.18 ± 0.05 0.19 ± 0.06	3.2 5.8	0.77
JETS-VC ($r_{\rm e}=2$) JETS-VC ($r_{\rm e}=3$)	5.28 ± 0.42 5.38 ± 0.41	0.23 ± 0.07 0.25 ± 0.09	2.2 2.8	4.78 ± 0.36 4.59 ± 0.25	0.21 ± 0.09 0.21 ± 0.09	2.2 3.0	0.79

