E2E-S2S-VC: # End-to-end sequence-to-sequence voice conversion Takuma Okamoto¹, Tomoki Toda^{2,1}, and Hisashi Kawai¹ ¹National Institute of Information and Communications Technology, Japan, ²Nagoya University, Japan ## Demo samples and source code Demo samples: Hi-Fi-CAPTAIN corpus for Japanese used in experiments Source code based on ESPnet2-TTS - Recipe for CMU-ARCTIC corpus - Recipe for Hi-Fi-CAPTAIN corpus used in experiments https://ast-astrec.nict.go.jp/demo_samples/e2e-s2s-vc/ # 1. Introduction - Voice conversion (VC) methods - Framewise VC based on frame-by frame conversion - Parallel data not required - * Difficult to convert duration and prosody between source and target speakers - # End-to-end models have been investigated (e.g. NVC-Net) - Sequence-to-sequence (S2S) VC - * Parallel data required - * Can convert duration and prosody by S2S manner - Baseline: non-autoregressive (AR) S2S-VC: CFS2+PWG - Features - ** Conformer-Fastspeech 2 (CFS2)-based non-AR conversion model with Parallel WaveGAN (PWG) neural vocoder - ** Faster and more stable by non-AR structure compared with conventional Transformer-based AR models - Four problems - 1. Three models (teacher Transformer, CFS2, PWG) are separately trained -> they cannot be jointly optimized - 2. Unstable alignment due to teacher AR-Transformer - 3. HiFi-GAN neural vocoder outperforms PWG - 4. Energy and fundamental frequency of source speaker required #### 2. Extended model #### CFS2'+HiFi-GAN CFS2': CFS2 with modified variance adapter without source energy and fundamental frequency features Modified valiance adapter predicts target energy and fundamental frequency features from source mel-spectrogram input ## **Hi-Fi-CAPTAIN:** Released! High-fidelity and high-capacity conversational speech synthesis corpus developed by NICT - 1 female and 1 male (English): 14K utts (parallel: 13K) 1 female and 1 male (Japanese): 19K utts (parallel: 18.5K) ESPnet2-TTS recipe for JETS-based E2E-TTS https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/ # 3. Proposed methods - End-to-end text-to-speech (E2E-TTS) models: VITS and JETS - VITS: VAE + flow + HiFi-GAN + monotonic alignment search (MAS) - JETS: Fastspeech 2 + HiFi-GAN + MAS - Proposed E2E-S2S-VC: VITS-VC and JETS-VC - Introducing VITS and JETS for E2E-TTS models into S2S-VC - ** Source mel-spectrogram input can be directly converted to target speech waveform with a single neural network - * Using a reduction factor only for encoder to successfully train MAS for VC - * Can solve all the four problems in baseline model ### 4. Experiments #### Experimental conditions - Dataset: Parallel 1,000 utterances for Japanese in Hi-Fi-CAPTAIN - * Training: 950 utts, Validation: 25 utts, Evaluation: 25 utts - Sampling frequency: 24 kHz - Objective evaluation criteria: MCD, logf₀RMSE, CER and RTF - Subjective evaluation criteria (N=20): MOS, speaker similarity #### Results of experiments | | Male → Female | | | $Female \longrightarrow Male$ | | | | |--|---------------------------------------|------------------------------------|----------------|------------------------------------|------------------------------------|----------------|--------------| | Method | MCD [dB] | $\log f_{ m o}$ RMSE | CER [%] | MCD [dB] | $\log f_{ m o}$ RMSE | CER [%] | RTF | | Original | N/A | N/A | 1.0 | N/A | N/A | 1.2 | | | (Baseline) CFS2+PWG
CFS2'+PWG | 5.83 ± 0.52
5.50 ± 0.45 | 0.25 ± 0.07
0.24 ± 0.08 | 3.4
3.0 | $4.74 \pm 0.26 \\ 4.76 \pm 0.23$ | $0.20 \pm 0.04 \\ 0.18 \pm 0.06$ | 4.4
6.8 | 3.44 3.41 | | CFS2'+HiFi-GAN (ft)
CFS2'+HiFi-GAN (jt) | 5.31 ± 0.58
5.95 ± 0.60 | 0.22 ± 0.07
0.25 ± 0.06 | 4.4
12.7 | 4.49 ± 0.31
4.80 ± 0.32 | 0.19 ± 0.08
0.22 ± 0.08 | 5.8
12.5 | 0.72
0.72 | | VITS-VC ($r_{\rm e}=2$)
VITS-VC ($r_{\rm e}=3$) | 5.31 ± 0.43
5.36 ± 0.43 | 0.23 ± 0.08
0.22 ± 0.07 | 5.2
5.4 | 4.50 ± 0.30
4.58 ± 0.28 | 0.18 ± 0.05
0.19 ± 0.06 | 3.2
5.8 | 0.77 | | JETS-VC ($r_{\rm e}=2$)
JETS-VC ($r_{\rm e}=3$) | 5.28 ± 0.42 5.38 ± 0.41 | 0.23 ± 0.07
0.25 ± 0.09 | 2.2 2.8 | 4.78 ± 0.36
4.59 ± 0.25 | 0.21 ± 0.09
0.21 ± 0.09 | 2.2 3.0 | 0.79 |